Information Systems Security (SOEN321) Introduction

Dr. Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)

Concordia University

Montreal, Canada

youssef@ciise.concordia.ca

Reference Materials

- There is no mandatory textbook
 - Basically there is no single reference that covers all the topics covered in this course
- Handouts will be available through the course website and/or the copy-center
- Optional Textbook (Available at the book store)
 - Computer Security: Principles and Practice, by William Stallings and Lawrie Brown, Prentice Hall, 5th edition

What should you learn in SOEN321?

- Common Body of Knowledge (CBK) domains as specified by International Information Systems Security Certification Consortium (ISC)²
- Commonly referred to as the ten domains of information security
 - Cryptography
 - Access Control
 - Application security
 - Business Continuity and Disaster Recovery Planning
 - Information Security and Risk Management
 - Legal, Regulations, Compliance and Investigations
 - Operations Security
 - Security Architecture and Design
 - Telecommunications and Network Security
 - Physical (Environmental) Security

Courses available at CIISE

◆ E69 - Topic Area: Information Systems Security

- INSE 6110 Foundation of Cryptography
- INSE 6120 Crypto-Protocol and Network Security
- INSE 6130 Operating Systems Security
- INSE 6140 Malware Defenses and Application Security
- INSE 6150 Security Evaluation Methodologies
- INSE 6160 Database Security and Privacy
- INSE 6180 Security and Privacy Implications of Data Mining
- INSE 6190 Wireless Network Security
- INSE 6610 Cybercrime Investigations
- INSE 6620 Cloud Computing Security and Privacy
- INSE 6630 Recent Developments in Information Systems Security
- INSE 6640 Smart Grids and Control System Security
- INSE 6650 Trusted Computing

Overview of Cryptology

- Greek: "krypto" = hide
- Cryptology science of hiding
 - = cryptography + cryptanalysis

Communication Model

Bob

Eve, Oscar, Carl

Goals of Cryptography

- Cryptography is the science that enables Alice and Bob to communicate securely in the presence of Eve
- Goals
 - Confidentiality
 - Data integrity
 - Authentication: Entity authentication (Identification) and Message authentication (Data origin authentication)
 - Non-repudiation
- Solutions: Protocols between Alice and Bob
- At least one of Alice or Bob needs to know more (or can do more) than Eve

Attacker (Cryptanalyst) Model

Passive

- The attacker does not modify the data, only monitors the communication.
- It threatens confidentiality.
- Example: listen to the communication between Alice and Bob, and if it's encrypted try to decrypt it.

Active

- The attacker is actively involved in inserting, deleting, or modifying data.
- It threatens authentication and confidentiality.

Taxonomy of cryptographic primitives

Symmetric Key Cryptosystem

- Advantages
 - high data throughput
 - relatively short size
- Disadvantages
 - the key must remain secret at both ends.
 - O(n²) keys to be managed.

- Basic Terminology
 - **plaintext** the original message
 - ciphertext the coded message
 - **cipher** algorithm for transforming plaintext to ciphertext
 - key info used in cipher known only to sender/receiver
 - encipher (encrypt) converting plaintext to ciphertext
 - decipher (decrypt) recovering ciphertext from plaintext

Basic Terminology

- plaintext the original message
- ciphertext the coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext

Kerckhoff's Principle

- ◆ A. Kerckhoffs was a 19th century Dutch cryptographer
- Security should depend only on the key
 - Don't assume enemy won't know algorithm
 - Can capture machines, disassemble programs, etc.
 - Too expensive to invent new algorithm if it might have been compromised
- Security by obscurity doesn't work
 - Look at history of examples
 - Better to have scrutiny by open experts
- The enemy knows the system being used." (Claude Shannon)

Examples of Classical Ciphers

- Letters of plaintext are replaced by other letters or by numbers or symbols
- Capital/small letters
- Space

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Shift Cipher

- Defined over Z₂₆ as follows:
- Convert each letter in the plaintext P to it's
- corresponding number.
- ♦ Key K, $0 \le K \le 25$.
- Let $P = C = Z_{26}$
- $e_k(P) = (P + K) \mod 26$
- $d_k(C) = (C K) \mod 26$

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Example

- ◆ P = CRYPTOGRAPHYISFUN
- **♦** K = 11
- ◆ C = NCJAVZRCLASJTDQFY
- Steps
 - $C \rightarrow 2$; 2+11 mod 26 = 13 $\rightarrow N$
 - $R \rightarrow 17$; 17+11 mod 26 = 2 \rightarrow C
 - **-** ...
 - N \rightarrow 13; 13+11 mod 26 = 24 \rightarrow Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Shift Cipher: Cryptanalysis

- $e_k(P) = (P + K) \mod 26$
- Can an attacker find K?
 - YES: exhaustive search,
 - key space is small (26 possible keys).
 - Once K is found, very easy to decrypt
 - $d_k(C) = (C K) \mod 26$
- History: K = 3, Caesar's cipher

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Substitution Ciphers

- ◆ Ciphertext, Plaintext ∈ Z₂₆
- \bullet \bullet \bullet \bullet \bullet (Plaintext) = Π (Plaintext)
- d_{Π} (Ciphertext) = Π^{-1} (Ciphertext)
- Example:
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- ◆ n = BADCEFGHIJKLMNOPQRSTUVWXYZ
- ◆ BECAUSE → AEDBUSE

Substitution Ciphers: Cryptanalysis

- Exhaustive search is infeasible
- – key space size is 26! $\approx 4 \times 10^{26}$
- Each language has certain features: frequency of letters, or of groups of two or more letters.
- Substitution ciphers preserve these language statistics.
- Substitution ciphers are vulnerable to frequency analysis attacks.

English Letter Frequencies

Vigenere Cipher

- Definition:
- Given m, a positive integer, $P = C = (Z_{26})^m$, and
- ♦ K = (k1, k2, ..., km) a key, we define:
- Encryption:
- \bullet e_k(p1, p2... pm) = (p1+k1, p2+k2...pm+km) (mod 26)
- Decryption:
- \bullet d_k(c1, c2... cm) = (c1-k1, c2-k2 ... cm- km) (mod 26)
- **Example:**
- ◆ Plaintext: CRYP TOGR APHY
- ◆ Key: LUCK LUCK LUCK
- Ciphertext: N L A Z E I I B L J J I

One Time Pad

- The one-time pad, which is a provably secure cryptosystem, was developed by Gilbert Vernam in 1918.
- $X = Y = K = (Z_m)^n$
- $X = (x1 \ x2 \dots xn)$
- \bullet K = (k1 k2 ... kn)
- $Y = (y1 \ y2 \dots yn)$
- \bullet e_k(X) = (x1+k1 x2+k2 ... xn+kn) mod m
- \bullet d_k(Y) = (y1-k1 y2-k2 ... yn-kn) mod m
- Provides perfect secrecy
- Disadvantages:
 - The size of key must be at least the size of the message
 - Each key is used only once. Otherwise, vulnerable to know plaintext attack.

OTP (Binary Example)

- The message is represented as a binary string (a sequence of 0's and 1's using a coding mechanism such as ASCII coding.
- The key is a truly random sequence of 0's and 1's of the same length as the message.
- The encryption is done by adding the key to the message modulo 2, bit by bit. This process is often called *exclusive or*, and is denoted by XOR. The symbol \oplus is used.

Example:

- Let the message be IF then its ASCII code be (1001001 1000110) and the key be (1010110 0110001).
- The ciphertext can be found xoring message and key bits
- Encryption:

1001001 1000110	plaintext
1010110 0110001	key
0011111 1110110	ciphertext

Decryption:

0011111 1110110	ciphertext
1010110 0110001	key
1001001 1000110	plaintext

р	k	<i>c</i> = <i>p</i> ⊕ <i>k</i>
0	0	0
0	1	1
1	0	1
1	1	0

Provable security of the OTP

- The security depends on the randomness of the key.
- It is hard to define randomness.
- In cryptographic context, we seek two fundamental properties in a binary random key sequence:
- Unpredictability: Independent of the number of the bits of a sequence observed, the probability of guessing the next bit is not better than ½. Therefore, the probability of a certain bit being 1 or 0 is exactly equal to ½.
- Balanced (Equal Distribution): The number of 1's and 0's should be equal.

Mathematical Proof (sketch)

- \bullet the probability of a key bit being 1 or 0 is exactly equal to $\frac{1}{2}$.
- The plaintext bits are not balanced. Let the probability of 0 be x and then the probability of 1 turns out to be 1-x.

m_i	prob.	k_i	prob.	C_i	prob.
0	X	0	1/2	0	½ <i>X</i>
0	X	1	1/2	1	½ <i>X</i>
1	1- <i>x</i>	0	1/2	1	½ (1- <i>x</i>)
1	1- <i>x</i>	1	1/2	0	½ (1- <i>x</i>)

- Let us calculate the probability of ciphertext bits.
- We find out the probability of a ciphertext bit being 1 or 0 is equal to $(\frac{1}{2})x + (\frac{1}{2})(1-x) = \frac{1}{2}$. Ciphertext looks like a random sequence.

Affine Cipher

- \bullet $e_k(x) = y = (\alpha x + \beta) \mod 26.$
- The key $k = (\alpha, \beta)$ and $\alpha, \beta \in \mathbb{Z}_{26}$
- \bullet $d_k(x) = x = \alpha 1 \cdot y + \beta$
- **Example:** $k = (\alpha, \beta) = (13, 4)$
- ♦ INPUT = (8, 13, 15, 20, 19) ⇒ ERRER
- \bullet ALTER = (0, 11, 19, 4, 17) \Rightarrow ERRER
- There is no one-to-one map btw plaintext and
- ciphertext space. What went wrong?

Affine Cipher: Valid Key Space

- \bullet β can be any number in Z_{26} . 26 possibilities
- \bullet Since α^{-1} has to exist we can only select integers in Z_{26}
- * s.t. $gcd(\alpha, 26) = 1$. Candidates are $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$
- ◆ Therefore, the key space has 12 · 26 = 312 candidates.

Attacks on encryption schemes

- Ciphertext-only attack
 - deduce the decryption key or plaintext by only observing ciphertext.
- Known-plaintext attack
 - using a quantity of plaintext and corresponding ciphertext.
- Chosen-plaintext attack
 - chooses plaintext and is then given corresponding ciphertext.
- Adaptive chosen-plaintext attack
 - chosen-plaintext attack where the choice of plaintext may depend on the ciphertext received from previous requests.
- Chosen-ciphertext attack
 - selects the ciphertext and is then given the corresponding plaintext.
- Adaptive chosen-ciphertext attack
 - chosen-ciphertext attack where the choice of ciphertext may depend on the plaintext received from previous requests.

Affine Cipher: Cryptanalysis

Attack types:

- Ciphertext only: exhaustive search or frequency analysis
- Known plaintext: two letters in the plaintext and corresponding ciphertext letters would suffice to find the key.

```
Example : plaintext: IF=(8, 5) and ciphertext PQ=(15, 16) 8 : \alpha + \beta \equiv 15 \mod 26 5 : \alpha + \beta \equiv 16 \mod 26 \Rightarrow \alpha = 17 \mod \beta = 9
```

• Chosen plaintext: Chose A and B as the plaintext. The first character of the ciphertext will be equal to $0 \cdot \alpha + \beta = \beta$ and the second will be $\alpha + \beta$.

Hill Cipher

- Block Cipher
 Let n=3 and the key matrix be
 M = $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix}$

 \bullet and the plaintext be ABC = (0, 1, 2) then the encryption operation is a vector-matrix multiplication

$$(0,1,2) \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix} \equiv (0,23,22) \mod 26 \Rightarrow AXW \text{ (ciphertext)}$$

In order to decrypt we need the inverse of key matrix M, which is

$$N = \begin{pmatrix} 22 & 5 & 1 \\ 6 & 17 & 24 \\ 15 & 13 & 1 \end{pmatrix}$$

Hill Cipher

- If we change one letter in the plaintext, all the letters of the ciphertext will be affected.
- Let the plaintext be BBC instead of ABC then the ciphertext

$$(1,1,2) \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{pmatrix} \equiv (1,25,25) \mod 26 \Rightarrow BZZ \text{ (ciphertext)}$$

- Claude Shannon, in Communication theory of secrecy systems Bell Systems Technical Journal 28, (1949), 656-715, introduced properties that a good cryptosystems should have:
- Diffusion: one character change in the plaintext should effect as many ciphertext characters as possible, and v.v.
- Confusion: The key/plaintext should not relate to the ciphertext in a simple way.

Number Theory (Refreshments)

- Modulo Operation:
- Question: What is 12 mod 9?
- **Answer:** 12 mod $9 \equiv 3$ or $12 \equiv 3 \mod 9$
- **Definition:** Let a, r, $m \in Z$ (where Z is a set of all integers) and m > 0. We write
- \bullet $a \equiv r \mod m$ if m divides r a.
- \bullet m is called the *modulus and r* is called the *remainder*
- \bullet $a = q \cdot m + r$ $0 \le r < m$

Number Theory (Cont.)

- Example: a = 42 and m=9
- $42 = 4 \cdot 9 + 6$ therefore $42 \equiv 6 \mod 9$
- Ring:
- **Definition:** The ring Z_m consists of
- \bullet The set $Z_m = \{0, 1, 2, ..., m-1\}$
- Two operations "+" and "×" for all a, $b \in \mathbb{Z}_m$ such that
 - $\bullet \quad a+b\equiv c \bmod m (c\in Zm)$
 - $a \times b \equiv d \mod m (d \in Zm)$
- **Example:** m = 9 $Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ $6 + 8 = 14 \equiv 5 \mod 9$ $6 \times 8 = 48 \equiv 3 \mod 9$

Properties of the ring $Z_m = \{0, 1, ..., m-1\}$

- The additive identity "0": a + 0 = a
- The additive inverse of a: -a = m a s.t. $a + (-a) \equiv 0 \mod m$
- Addition is closed i.e if $a, b \in Z_m$ then $a + b \in Z_m$
- \bullet Addition is commutative a + b = b + a
- Addition is associative (a + b) + c = a + (b + c)
- Multiplicative identity "1": $a \times 1 \equiv a \mod m$
- The multiplicative inverse of a exists if gcd(a, m) = 1 and denoted as a^1 s.t. $a^1 \times a \equiv 1 \mod m$
- lacktriangle Multiplication is closed i.e if $a, b \in \mathbb{Z}_m$ then $a \times b \in \mathbb{Z}_m$
- Multiplication is commutative $a \times b = b \times a$
- Multiplication is associative $(a \times b) \times c = a \times (b \times c)$

Some Remarks on Z_m

- Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide.
 - **Example:** Is the division 4/15 mod 26 possible?
 - In fact, $4/15 \mod 26 = 4 \times 15^{-1} \mod 26$
 - Does 15⁻¹ mod 26 exist ?
 - It exists only if gcd(15, 26) = 1.
 - \bullet 15⁻¹ mod 26 = 7
 - therefore, $4/15 \mod 26 = 4 \times 7 \mod 26 = 28 \equiv 2 \mod 26$
- The modulo operation can be applied whenever we want $(a + b) \mod m = [(a \mod m) + (b \mod m)] \mod m$ $(a \times b) \mod m = [(a \mod m) \times (b \mod m)] \mod m$