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Reference Materials

There is no mandatory textbook

 Basically there is no single reference that covers all the topics 
covered in this course

Handouts will be available through the course website and/or 
the copy-center

Optional Textbook (Available at the book store)

 Computer Security: Principles and Practice, by William 
Stallings and Lawrie Brown, Prentice Hall, 5th edition



What should you learn in SOEN321?

Common Body of Knowledge (CBK) domains as specified by 
International Information Systems Security Certification Consortium 
(ISC)2

Commonly referred to as the ten domains of information security

 Cryptography

 Access Control 

 Application security 

 Business Continuity and Disaster Recovery Planning 

 Information Security and Risk Management 

 Legal, Regulations, Compliance and Investigations 

 Operations Security 

 Security Architecture and Design 

 Telecommunications and Network Security 

 Physical (Environmental) Security



Courses available at CIISE

E69 - Topic Area: Information Systems Security

 INSE 6110 Foundation of Cryptography

 INSE 6120 Crypto-Protocol and Network Security 

 INSE 6130 Operating Systems Security 

 INSE 6140 Malware Defenses and Application Security 

 INSE 6150 Security Evaluation Methodologies

 INSE 6160 Database Security and Privacy

 INSE 6180 Security and Privacy Implications of Data Mining

 INSE 6190 Wireless Network Security

 INSE 6610 Cybercrime Investigations

 INSE 6620 Cloud Computing Security and Privacy

 INSE 6630 Recent Developments in Information Systems Security

 INSE 6640 Smart Grids and Control System Security

 INSE 6650 Trusted Computing



Overview of Cryptology

Greek: “krypto” = hide

Cryptology – science of hiding 

= cryptography + cryptanalysis



Communication Model

Alice

Bob

Eve, Oscar, Carl



Goals of Cryptography

Cryptography is the science that enables Alice and Bob to 
communicate securely in the presence of Eve

Goals
 Confidentiality

 Data integrity

 Authentication: Entity authentication (Identification) and Message 
authentication (Data origin authentication)

 Non-repudiation

Solutions: Protocols between Alice and Bob

At least one of Alice or Bob needs to know more (or can do 
more) than Eve



Attacker (Cryptanalyst) Model

Passive

 The attacker does not modify the data, only monitors the 
communication. 

 It threatens confidentiality.

 Example: listen to the communication between Alice and Bob, and 
if it’s encrypted try to decrypt it.

Active

 The attacker is actively involved in inserting, deleting, or modifying 
data. 

 It threatens authentication and confidentiality.



Taxonomy of cryptographic primitives

Arbitrary length hash functions

One-way permutations

Random sequences

Symmetric-key ciphers

Arbitrary length hash functions(MACs)

Signatures

Pseudorandom sequences

Identification primitives

Public-key ciphers

Signatures

Identification primitives

Unkeyed
Primitives

Symmetric-key
Primitives

Public-key
Primitives

Security
Primitives

Block
ciphers

Stream
ciphers



Symmetric Key Cryptosystem

Basic Terminology 
 plaintext - the original message 
 ciphertext - the coded message 
 cipher - algorithm for transforming plaintext 

to ciphertext 
 key - info used in cipher known only to 

sender/receiver 
 encipher (encrypt) - converting plaintext 

to ciphertext 
 decipher (decrypt) - recovering ciphertext 

from plaintext

Advantages
 high data throughput

 relatively short size

Disadvantages
 the key must remain secret at both 

ends.

 O(n2) keys to be managed. 



Basic Terminology

plaintext - the original message 

ciphertext - the coded message 

cipher - algorithm for transforming plaintext to ciphertext 

key - info used in cipher known only to sender/receiver 

encipher (encrypt) - converting plaintext to ciphertext 

decipher (decrypt) - recovering ciphertext from plaintext



Kerckhoff’s Principle

A. Kerckhoffs was a 19th century Dutch cryptographer

Security should depend only on the key

 Don’t assume enemy won’t know algorithm

 Can capture machines, disassemble programs, etc.

 Too expensive to invent new algorithm if it might have been 
compromised

Security by obscurity doesn’t work
 Look at history of examples

 Better to have scrutiny by open experts

“The enemy knows the system being used.” (Claude 
Shannon)



Examples of Classical Ciphers

Letters of plaintext are replaced by other letters or by 
numbers or symbols

Capital/small letters

Space



Shift Cipher

Defined over Z26 as follows:

Convert each letter in the plaintext P to it's

corresponding number.

• Key K, 0 ≤ K ≤ 25.

• Let P = C = Z26

• ek(P) = (P + K) mod 26

• dk(C) = (C – K) mod 26



Example

P = CRYPTOGRAPHYISFUN

K = 11

C = NCJAVZRCLASJTDQFY

Steps

 C → 2; 2+11 mod 26 = 13 → N

 R → 17; 17+11 mod 26 = 2 → C

 …

 N → 13; 13+11 mod 26 = 24 → Y



Shift Cipher: Cryptanalysis

ek(P) = (P + K) mod 26

Can an attacker find K? 

 YES: exhaustive search,

 key space is small (26 possible keys).

 Once K is found, very easy to decrypt

 dk(C) = (C – K) mod 26

History: K = 3, Caesar’s cipher

meet me after the toga party

PHHW PH DIWHU WKH WRJD SDUWB



Substitution Ciphers

Ciphertext, Plaintext  Є Z26

• eΠ(Plaintext) = Π (Plaintext)

• dΠ(Ciphertext) = Π-1 (Ciphertext)

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

π = B A D C E F G H I J K L M N O P Q R S T U V W X Y Z

BECAUSE → AEDBUSE



Substitution Ciphers: Cryptanalysis

Exhaustive search is infeasible

– key space size is 26! ≈ 4×1026

Each language has certain features: frequency of letters, 
or of groups of two or more letters.

Substitution ciphers preserve these language statistics.

Substitution ciphers are vulnerable to frequency analysis 
attacks.



English Letter Frequencies



Vigenere Cipher

Definition:

Given m, a positive integer, P = C = (Z26)
m, and

K = (k1, k2, … , km) a key, we define:

Encryption:

ek(p1, p2… pm) = (p1+k1, p2+k2…pm+km) (mod 26)

Decryption:

dk(c1, c2… cm) = (c1-k1, c2-k2 … cm- km) (mod 26)

Example:

Plaintext:   C R Y P   T O G R    A P H Y

Key:          L U C K   L  U C K    L U C K

Ciphertext: N L A Z   E  I  I  B    L J  J I



One Time Pad

The one-time pad, which is a provably secure cryptosystem,
was developed by Gilbert Vernam in 1918.

X = Y = K = (Zm)n

X = (x1 x2 … xn)

K = (k1 k2 … kn)

Y = (y1 y2 … yn)

ek(X) = (x1+k1 x2+k2 … xn+kn) mod m

dk(Y) = (y1-k1 y2-k2 … yn-kn) mod m

Provides perfect secrecy

Disadvantages: 
 The size of key must be at least the size of the message

 Each key is used only once. Otherwise, vulnerable to know plaintext 
attack.



OTP (Binary Example)

 The message is represented as a binary string (a sequence of 0’s and 1’s using a 
coding mechanism such as ASCII coding.

 The key is a truly random sequence of 0’s and 1’s of the same length as the 
message.

 The encryption is done by adding the key to the message modulo 2, bit by bit. This 
process is often called exclusive or, and is denoted by XOR. The symbol  is used.

Example: 
 Let the message be IF then its ASCII code be (1001001 1000110) and the key be 

(1010110 0110001).
 The ciphertext can be found xoring message and key bits
 Encryption:

1001001 1000110 plaintext
1010110 0110001 key
0011111 1110110 ciphertext

 Decryption:

0011111 1110110 ciphertext
1010110 0110001 key
1001001 1000110 plaintext

p k c = p k

0 0 0

0 1 1

1 0 1

1 1 0



Provable security of the OTP

The security depends on the randomness of the key.

It is hard to define randomness.

In cryptographic context, we seek two fundamental 
properties in a binary random key sequence:

Unpredictability: Independent of the number of the bits of 
a sequence observed, the probability of guessing
the next bit is not better than ½. Therefore, the probability 
of a certain bit being 1 or 0 is exactly equal to ½.

Balanced (Equal Distribution): The number of 1’s and 0’s 
should be equal.



Mathematical Proof (sketch)

the probability of a key bit being 1 or 0 is exactly equal to ½.

The plaintext bits are not balanced. Let the probability of 0 be x 
and then the probability of 1 turns out to be 1-x. 

Let us calculate the probability of ciphertext bits.

We find out the probability of a ciphertext bit being 1 or 0 is 
equal to (½)x + (½)(1-x) = ½. Ciphertext looks like a
random sequence.

mi             prob. ki          prob. ci            prob.

0           x 0        ½ 0         ½ x

0           x 1        ½ 1         ½ x

1           1-x 0        ½ 1         ½ (1-x)

1           1-x 1        ½ 0         ½ (1-x)



Affine Cipher

ek(x) = y = ( x + ) mod 26.

The key k = (, ) and ,   26

dk(x) = x = -1 · y + 

Example: k = (, ) = (13, 4)

INPUT = (8, 13, 15, 20, 19)  ERRER

ALTER = (0, 11, 19, 4, 17)  ERRER

There is no one-to-one map btw plaintext and

ciphertext space.What went wrong?



Affine Cipher: Valid Key Space

 can be any number in 26 . 26 possibilities

Since -1 has to exist we can only select integers in 26

s.t. gcd(, 26) = 1. Candidates are  {1, 3, 5, 7, 9, 11, 15, 
17, 19, 21, 23, 25}

Therefore, the key space has 12 · 26 = 312 candidates.



Attacks on encryption schemes

Ciphertext-only attack

 deduce the decryption key or plaintext by only observing ciphertext. 

Known-plaintext attack

 using a quantity of plaintext and corresponding ciphertext.

Chosen-plaintext attack

 chooses plaintext and is then given corresponding ciphertext. 

Adaptive chosen-plaintext attack

 chosen-plaintext attack where the choice of plaintext may depend on the 
ciphertext received from previous requests.

Chosen-ciphertext attack

 selects the ciphertext and is then given the corresponding plaintext.

Adaptive chosen-ciphertext attack

 chosen-ciphertext attack where the choice of ciphertext may depend on 
the plaintext received from previous requests.



Affine Cipher: Cryptanalysis

Attack types:

 Ciphertext only: exhaustive search or frequency analysis

 Known plaintext: two letters in the plaintext and corresponding 
ciphertext letters would suffice to find the
key.
Example : plaintext: IF=(8, 5) and ciphertext PQ=(15, 16)
8 ·  +   15 mod 26
5 ·  +   16 mod 26   = 17 and  = 9

 Chosen plaintext: Chose A and B as the plaintext. The first
character of the ciphertext will be equal to 0· +  =  and the 
second will be  + .



Hill Cipher

Block Cipher 

Let n=3 and the key matrix be

and the plaintext be ABC = (0, 1, 2) then the encryption operation 
is a vector-matrix multiplication

In order to decrypt we need the inverse of key matrix M, which is
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Hill Cipher

If we change one letter in the plaintext, all the letters of the 
ciphertext will be affected.

Let the plaintext be BBC instead of ABC then the ciphertext 

Claude Shannon, in Communication theory of secrecy systems Bell 
Systems Technical Journal 28, (1949), 656-715,  introduced 
properties that a good cryptosystems should have: 

Diffusion: one character change in the plaintext should 
effect as many ciphertext characters as possible, and v.v.

Confusion: The key/plaintext should not relate to the ciphertext 
in a simple way.
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Number Theory (Refreshments)

Modulo Operation:

Question: What is 12 mod 9?

Answer: 12 mod 9  3 or 12  3 mod 9

Definition: Let a, r, m   (where  is a set of all 
integers) and m  0. We write 

a  r mod m if m divides r – a.

m is called the modulus and r is called the remainder

a = q · m + r 0  r < m



Number Theory (Cont.)

Example: a = 42 and m=9

42 = 4 · 9 + 6 therefore 42  6 mod 9

Ring:

Definition: The ring m consists of

The set m = {0, 1, 2, …, m-1}

Two operations “+” and “” for all a, b  m such that
 a + b  c mod m (c  m )

 a  b  d mod m (d  m )

Example: m = 9 9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

6 + 8  = 14  5 mod 9

6  8   = 48  3 mod 9



Properties of the ring  Zm = {0, 1, …, m-1}

The additive identity “0”: a + 0 = a 

The additive inverse of a: -a = m – a s.t. a + (-a)  0 mod 
m

Addition is closed i.e if a, b  m then a + b  m

Addition is commutative a + b = b + a 

Addition is associative (a + b) + c = a + (b + c)

Multiplicative identity “1”: a  1  a mod m

The multiplicative inverse of a exists if gcd(a, m) = 1 and
denoted as a-1 s.t. a-1  a  1 mod m

Multiplication is closed i.e if a, b  m then a  b  m

Multiplication is commutative a  b = b  a

Multiplication is associative (a  b)  c = a  (b  c)



Some Remarks on Zm

Roughly speaking a ring is a mathematical structure in 
which we can add, subtract, multiply, and even sometimes 
divide.
 Example: Is the division 4/15 mod 26 possible?

 In fact, 4/15 mod 26 = 4  15-1 mod 26

 Does 15-1 mod 26 exist ? 

 It exists only if gcd(15, 26) = 1. 

 15-1 mod 26 = 7 

 therefore, 4/15 mod 26 = 4  7 mod 26 = 28  2 mod 26

The modulo operation can be applied whenever we want
(a + b) mod m = [(a mod m) + (b mod m) ] mod m
(a  b) mod m = [(a mod m)  (b mod m) ] mod m


