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Famous Number Theory Problems

FACTORING | Given n, find a factor of n
RSAP find m such that m¢ = cmod n
QRP if , decide whether gis a QR or not.
SQROOT find x such that ¥ = amod n
DLP find x such that ¢ = ymod p
GDLP DLP on a finite cyclic group G
DHP given g?7mod p, g? mod p, find g?? mod p
GDHP DHP on a finite cyclic group G
SUBSETSUM | given {a,, ..., a,}and s, find subset of a;that sums to s



Discrete Logarithm Problem (DLP)

# Given a multiplicative group (G, *), an element g in G
having order n and an element y in the group generated by
g, denoted <g>

# Find the unique integer x such that g mod n = y
# X is the discrete logarithm



Diffie-Hellman Key Exchange

Public parameters:
p: A large prime
g: Ageneratorof Z,". ie, {g'| 0 <i<p-2} = {1, 2,...,p-
1}.

a, beA01,2,.,p-2} are secret.

Alice Bob
g2 mod p
g mod p
computes computes
(g°)* mod p (9%)° mod p

K=g2 modp



Man in the middle attack

# Attacker can intercept, modify, insert, delete messages on the
network.

# E.g., Man-in-the-Middle attack against DH:

Eve

~g”mod p Elgbmodp

K’ = g2 mod p K= g?® mod p

# Eve can translate messages between Alice & Bob without being
noticed

# Similar attacks possible on RSA & other PKC protocols.



DH Encryption

# Three pass protocol
# Alice chooses a,, a, such that a, a,=1 mod (p-1)
4 Bob chooses b,, b, such that b, b,=1 mod (p-1)

Alice Bob
mal mod p

mal bl mod p

mal bl a2 mod p

Bob computes
mat blazbz mod p= m mod p



Security of DH

# Discrete Logarithm Problem: Given p, g, g2 mod p,
what is a? (easy in Z, hard in Z,.)

# DH Problem: Given p, g, g2 mod p, g°> mod p,
what is g2°> mod p?

# Conjecture: DHP is as hard as DLP.
(note: Neither is proven to be NP-complete.)
# “Strong prime”; If (p-1)/2 is also a prime.

# Best known method for DLP: "Number Field Sieve”
with running time e(1:323 + 0(1)) ((in p)*(1/3)) ((In In p)*(2/3)),




Square and Multiply (Review)

How to compute (g mod p) for large p, g, a?
X" = (xK)2 if n = 2k
(xK)2x ifn=2k+1
“Repeated squaring”: Start with the most significant
bit of the exponent.

E.g. Computing 32> mod 20. 25 = (11001),
Yo = 31 mod 20 =3
y; = 300 mod 20 = 323 mod 20 = 7
y, = 3010 mod 20 = 72 mod 20 = 9
y; = 311000 mod 20 = 92 mod 20 = 1
y, = 3(1001) mod 20 = 123 mod 20 = 3



Rabin Public Key Encryption

eThe first example of a provably-secure public key
encryption scheme.

e Recovering the plaintext is computationally
equivalent to factoring.

Key Generation

select p and g primes s.t. p=3 mod 4 and q=3 mod 4
n = pq

Public key: n

Private key: (p, q)



Rabin Public Key Encryption (Cont.)

4# Encryption
C=m2mod n
# Decryption

m=+/C modn

# Decryption is not an injection:
# Find the four square roots
® ml, m2, m3, and m4 of c mod n

#® The message sent was either m1 , m2,
m3, or m4



Finding square root mod n

Given ¢, finds out x such that x2 = c¢mod n
o (clPtDA )2 = c(Pr)2 = c(PV/2:c = ¢ (mod p)
— x mod p should be ¢ #+1)/4 or -c (p+1)/4
Similarly, x mod g should be ¢ (¢+1)/4 or -¢ (g+1)/4
Use Chinese Remainder Theorem to solve it
= Find integers g, b such that ap + bg = 1.
Compute r= ¢4 mod pand s = c@1/* mod q.
Compute m = (aps + bgr) mod n.
Compute t = (aps - bgr) mod n.
# — The four square roots of ¢ modulo nare m, -mmod n, ¢, and -t mod
n.

# For p=1 (mod 4), there is no known PTIME deterministic algorithm to
compute square roots modulo p

¢ @ e



Security of Rabin

# Provably secure against passive adversary
# relying on the difficulty of factoring large composites

# Obtaining plaintext from the ciphertext is equivalent to the
modulo square root problem

# Modulo square root problem is equivalent to prime
factoring

# Susceptible to chosen ciphertext attack similar to RSA
# Many RSA attacks can be also applicable to Rabin



ElGamal Encryption

# Published in 1985 by ElGamal

Its security based on the intractability of the discrete
logarithm problem

@
#® Message expansion: the ciphertext is twice as big as the
@

original message

Uses randomization, each message has p-1 possible
different encryptions



ElGamal Encryption (Cont.)

# Key Generation
= prime p (system-wide parameter) and a generator g of Z,*
s A’s public key is y=¢g*, A's private key is x

# Encryption
= generate random integer kA and compute r = g¢ mod p
= compute c =my* mod p
n Ciphertext (7 ©)

# Decryption

= m=cr2modp



McEliece PKE

# Based on error-correcting codes

# Select a particular code for which an efficient decoding algorithm is
known, then to disquise it as a general linear code

# The problem of decoding an arbitrary linear code is NP-hard

m description of the original code can serve as the private key
= While a description of the transformed code serves as the public key

# Very inefficient but the key size is very large



Knapsack

# Based on Subset sum problem = NP-complete

= Select a subset sum problem that is easy to solve (super increasing
sequence)

= then disguise it as an instance of the general subset sum problem
which is hopefully difficult to solve

#® Key

= The original knapsack set can serve as the private key
= While the transformed knapsack set serves as the public key

# Most Knapsack proposals are broken



More Details

Knapsack Problem: Let I = {0, 1,...,n—1}.

Given the integer vector A= lap.ay,.... a5 1|
and another integer X, is there a J C T such
that

thi=..1':
icJ

Easy Knapsack Problem: If the numbers a;
have the superincreasing property, i.e.,

i1
Z iy < 0 i
i=1(
then the knapsack problem is easy
Hard Knapsack Problem: Without the su-

perincreasing property the knapsack problem
(in general) is hard



Super increasing Sequences

Hard Example:
A=1{2.4,512,13}, Nonsuperincreasing

Let X = 19. We need to tryv all subsets of A
to find out which one of these sums to 19

3+4=7 3+65=8 34+12=165
3413=16 4+4+5=9 4412=16
4+13=17 5+12=17 5+13=18
12+ 13=25

3+4+5=12 3+4+4+412=19

34+44+13=20 445412=21

44+5+13=22 5412413 =230

Easy Example:
A=1{1.2,4.8. 16}, Superincreasing

12,142 <4 14244 <8, 1+24+4+8 < 16
Let X = 23, Solution is found by computing

the binary expansion of X = 23 = (10111 )»,
thus 14+ 2444 16 = 23



How to design a trapdoor Knapsack

Take an easy knapsack and disguise it

Example: Given B and X = 72, is there a

Z cA=11.2.4,8.16} Select a prime . - -
Example: A 11.2.4.8.15} Select a prime p subset of B summing to X 7

larger than the sum 321, for example p = 37
Select + and compute ¢ 1 mod p, for example,

f =17 and ¢ 1 — 24 Solve the easy knapsack with X

X' = Xt Ymod 37
Froduce a new knapsack vector B from A such = 2f
that A=11.24,8.16) and
h; = ait mod p X'=2484+16=26

This gives B = {17,34,31,25,13}
This gives the solution for the hard knapsack:

This knapsack problem is nonsuperincreasing

B = {17,34.31,25.13} and
However, with the special trapdoor informaticn N =34+25+4+13=72
t =17, t 1 =24, and p = 37, we can convert

this problem to the sasy version



Example for a Knapsack Cryptosystem

User R: Publishes B = {17,34,31, 25,13}

Keeps A4 = {1.2.4.8,16}, t = 17, t1 = 24,
and p = 37 secret

User S: wants to send the message M = 12
to User R

User S: Takes M = 12 = (01100)»

Computes
C'=0.-174+1-344+1-3140-254+0-13

which gives ' = 65

Send ' = 65 to User R

User R:
Receives (' = 65
Computes ¢! =65t~ 1 = 65.24 = 6 mod 37

Solves the easy knapsack problem:

6=0-14+1-2+4+1-440-840-16

This gives the message as (01100), = 12



Digital Signature



Digital Signature Schemes

# Digital Signature: a data string which associates a
message with some originating entity.
# Digital Signature Scheme:
= Secret signing key and a public verification key

# Services provided:
= Authentication
» Data integrity
= Non-Repudiation (MAC does not provide this.)



Attack Models for Digital Signatures

# Key-only attack: Adversary knows only the verification
function (which is supposed to be public).

# Known message attack: Adversary knows a list of
messages previously signed by Alice.

# Chosen message attack: Adversary can choose what
messages wants Alice to sign, and he knows both the
messages and the corresponding signatures.



Adversarial Goals

# Total break: adversary is able to find the secret for
signing, so he can forge then any signature on any
message.

# Selective forgery: adversary is able to create valid
sighatures on a message chosen by someone else, with a
significant probability.

# Existential forgery: adversary can create a pair
(message, signature), s.t. the signature of the message is
valid.

# A signature scheme cannot be perfectly secure; it can only
be computationally secure.

# Given enough time and adversary can always forge Alice’s
signature on any message.



Digital Signatures and Hash

# \ery often digital signatures are used with hash functions,
hash of a message is signed, instead of the message.

# Hash function must be:
= Pre-image resistant
= Weak collision resistant
m Strong collision resistant



RSA Signature

# Key generation ( as in RSA encryption):
= Select 2 large prime numbers of about the same size, p and g
s Compute n=p q and @(n)=(p-1)(g-1)
= Select random integer e, 1 < e < d(n) s.t. gcd(e, d(n)) =1
= Compute d = e mod d(n)

# Public key: (e, n)

# Secret key: d, p and g must also remain secret



RSA Signature (cont.)

# Signing message M

# M must verify 0 <M < n

# Use private key (d)

@ compute S = M9 mod n

# Verifying signature S

# Use public key (e, n)

@ Compute Se mod n = (M9 mod n)emod n = M

# Note: in practice, a hash of the message is signed and not
the message itself.



Example of forging

# Attack based on the multiplicative property of property of
RSA.

® vyl = sigy(xy)

#® y2 = sigy(X5), then

% ver (X, X, mod n, y, Yy, mod n) = true

# S0 adversary can create the valid signature y, y, mod n on
the message x; X, mod n

# This is an existential forgery using a known message
attack.



ElGamal Signature Scheme

# Key Generation ( as in EIGamal encryption)

# Generate a large random prime p such that DLP is
infeasible in Zp and a generator g of the multiplicative
group Zp of the integers modulo p

# Select a random integer g, 1 <a <p-2, and compute y= g¢
mod p

# Public key is (p, g, Y)
# Private key is a.
# Recommended sizes: 1024 bits for p and 160 bits for a.



ElGamal Signature (Signing and verification)

# Signing message M
= Select randomk, 1 < k<p-1,,keZ*
= Compute
+ r=gkmodp
+ s= ki(M-ar) mod (p-1)
# Signature is: (r,s)
# Verification
» Verify thatrisin Z,,
= Computevl =y"r"mod p
= Compute v2 =g mod p
s Accept iff vi=v2
# Size of signature is double size of p

# Hash function must be used, otherwise easy for an existential forgery
attack)



Digital Signature Algorithm (DSA)

# Variant of El Gamal
# Use a subgroup of Z,*



