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Famous Number Theory Problems

FACTORING Given n, find a factor of n

RSAP find m such that me = c mod n

QRP if        , decide whether a is a QR or not.

SQROOT find x such that x2 = a mod n

DLP find x such that gx = y mod p

GDLP DLP on a finite cyclic group G

DHP given ga mod p, gb mod p, find gab mod p

GDHP DHP on a finite cyclic group G

SUBSETSUM given {a1, … , an} and s, find subset of aj that sums to s



Discrete Logarithm Problem (DLP)

Given a multiplicative group (G, *), an element g in G 
having order n and an element y in the group generated by 
g, denoted <g>

Find the unique integer x such that gx mod n = y

x is the discrete logarithm



Diffie-Hellman Key Exchange

Public parameters:
p:  A large prime
g:  A generator of Zp

*. ie., {gi | 0 ≤ i ≤ p-2}  =  {1, 2,...,p-
1}.

a, b  {0, 1, 2,...,p-2}  are secret.

BobAlice
ga mod p

gb mod p
computes 

(ga)b mod p

computes 

(gb)a mod p

K = gab mod p



Man in the middle attack

Attacker can intercept, modify, insert, delete messages on the 
network.

E.g., Man-in-the-Middle attack against DH:

Eve can translate messages between Alice & Bob  without being 
noticed

Similar attacks possible on RSA & other PKC protocols.

BobAlice ga mod p

gb’ mod p

K’ = gab’ mod p

ga’ mod p

gb mod p

Eve

K’’ = ga’b mod p



DH Encryption

Three pass protocol

Alice chooses a1, a2 such that a1 a2=1 mod (p-1)

Bob chooses b1, b2 such that b1 b2=1 mod (p-1)

BobAlice
ma1 mod p

ma1 b1 mod p

Bob computes

ma1 b1 a2 b2 mod p= m mod p

ma1 b1 a2 mod p



Discrete Logarithm Problem: Given p, g, ga mod p, 
what is a?  (easy in Z, hard in Zp.)

DH Problem: Given p, g, ga mod p, gb mod p, 
what is gab mod p? 

Conjecture:  DHP is as hard as DLP.

(note:  Neither is proven to be NP-complete.)

“Strong prime”:  If (p-1)/2 is also a prime.

Best known method for DLP: “Number Field Sieve” 
with running time  e(1.923 + O(1)) ((ln p)^(1/3)) ((ln ln p)^(2/3)).

Security of DH



Square and Multiply (Review)

How to compute (ga mod p) for large p, g, a?
xn =  (xk)2 if n = 2k

(xk)2x if n = 2k + 1

“Repeated squaring”: Start with the most significant 
bit of the exponent.

E.g.  Computing 325 mod 20.  25 = (11001)2

y0 =  3(1) mod 20  = 3

y1 =  3(11) mod 20 = 32 3 mod 20 = 7

y2 =  3(110) mod 20 = 72 mod 20 = 9

y3 =  3(1100) mod 20 = 92 mod 20 = 1

y4 =  3(11001) mod 20 = 12 3 mod 20 = 3 



Rabin Public Key Encryption

•The first example of a provably-secure public key
encryption scheme.
• Recovering the plaintext is computationally
equivalent to factoring.
Key Generation
select p and q primes s.t. p=3 mod 4 and q=3 mod 4
n = pq
Public key: n
Private key: (p, q)



Rabin Public Key Encryption (Cont.)

Encryption

C=m2 mod n

Decryption

Decryption is not an injection:

Find the four square roots

m1 , m2 , m3, and m4 of c mod n

The message sent was either m1 , m2 , 
m3, or m4

nCm mod



Finding square root mod n

Given c, finds out x such that x2 = c mod n

• (c (p+1)/4 )2 ≡ c (p+1)/2 ≡ c (p-1)/2·c ≡ c (mod p)

– x mod p should be c (p+1)/4 or -c (p+1)/4

Similarly, x mod q should be c (q+1)/4 or -c (q+1)/4

Use Chinese Remainder Theorem to solve it

 Find integers a, b such that ap + bq = 1.

 Compute r = c (p+1)/4 mod p and s = c (q+1)/4 mod q.

 Compute m = (aps + bqr) mod n.

 Compute t = (aps - bqr) mod n.

– The four square roots of c modulo n are m, -m mod n, t, and -t mod 
n.

For p=1 (mod 4), there is no known PTIME deterministic algorithm to 
compute square roots modulo p



Security of Rabin

Provably secure against passive adversary

relying on the difficulty of factoring large composites

Obtaining plaintext from the ciphertext is equivalent to the 
modulo square root problem

Modulo square root problem is equivalent to prime 
factoring

Susceptible to chosen ciphertext attack similar to RSA

Many RSA attacks can be also applicable to Rabin



ElGamal Encryption

Published in 1985 by ElGamal

Its security based on the intractability of the discrete 
logarithm problem

Message expansion: the ciphertext is twice as big as the 
original message

Uses randomization, each message has p-1 possible 
different encryptions



ElGamal Encryption (Cont.)

Key Generation

 prime p (system-wide parameter) and a generator g of Zp*

 A’s public key is y=gx, A’s private key is x

Encryption

 generate random integer k and compute r = gk mod p

 compute c = m y k mod p

 Ciphertext (r, c)

Decryption

 m = c r –a mod p



McEliece PKE

Based on error-correcting codes

Select a particular code for which an efficient decoding algorithm is 

known, then to disguise it as a general linear code

The problem of decoding an arbitrary linear code is NP-hard 

 description of the original code can serve as the private key

 while a description of the transformed code serves as the public key

Very inefficient but the key size is very large



Knapsack

Based on Subset sum problem = NP-complete

 select a subset sum problem that is easy to solve (super increasing 
sequence)

 then disguise it as an instance of the general subset sum problem 
which is hopefully difficult to solve

Key

 The original knapsack set can serve as the private key

 while the transformed knapsack set serves as the public key

Most Knapsack proposals are broken



More Details



Super increasing Sequences



How to design a trapdoor Knapsack



Example for a Knapsack Cryptosystem



Digital Signature



Digital Signature Schemes

Digital Signature: a data string which associates a 
message with some originating entity.

Digital Signature Scheme:

 secret signing key and a public verification key

Services provided:

 Authentication

 Data integrity

 Non-Repudiation (MAC does not provide this.)



Attack Models for Digital Signatures

Key-only attack: Adversary knows only the verification 
function (which is supposed to be public).

Known message attack: Adversary knows a list of 
messages previously signed by Alice.

Chosen message attack: Adversary can choose what 
messages wants Alice to sign, and he knows both the 
messages and the corresponding signatures.



Adversarial Goals

Total break: adversary is able to find the secret for 
signing, so he can forge then any signature on any 
message.

Selective forgery: adversary is able to create valid 
signatures on a message chosen by someone else, with a 
significant probability.

Existential forgery: adversary can create a pair 
(message, signature), s.t. the signature of the message is 
valid.

A signature scheme cannot be perfectly secure; it can only 
be computationally secure.

Given enough time and adversary can always forge Alice’s 
signature on any message.



Digital Signatures and Hash

Very often digital signatures are used with hash functions, 
hash of a message is signed, instead of the message.

Hash function must be:

 Pre-image resistant

 Weak collision resistant

 Strong collision resistant



RSA Signature

Key generation ( as in RSA encryption):

 Select 2 large prime numbers of about the same size, p and q

 Compute n=p q  and ф(n)=(p-1)(q-1)

 Select random integer e, 1 < e < ф(n)  s.t. gcd(e, ф(n)) = 1

 Compute d = e-1 mod ф(n)

Public key: (e, n)

Secret key: d, p and q must also remain secret



RSA Signature (cont.)

Signing message M

M must verify 0 < M < n

Use private key (d)

compute S = Md mod n

Verifying signature S

Use public key (e, n)

Compute Se mod n = (Md mod n)e mod n = M

Note: in practice, a hash of the message is signed and not 
the message itself.



Example of forging

Attack based on the multiplicative property of property of 
RSA.

y1 = sigK(x1)

y2 = sigK(x2), then

verK(x1 x2 mod n, y1 y2 mod n) = true

So adversary can create the valid signature y1 y2 mod n on 
the message x1 x2 mod n

This is an existential forgery using a known message 
attack.



ElGamal Signature Scheme

Key Generation ( as in ElGamal encryption)

Generate a large random prime p such that DLP is 
infeasible in Zp and a generator g of the multiplicative 
group Zp of the integers modulo p

Select a random integer a, 1 ≤a ≤p-2, and compute y= ga

mod p

Public key is (p,  g, y)

Private key is a.

Recommended sizes: 1024 bits for p and 160 bits for a.



ElGamal Signature (Signing and verification) 

Signing message M 

 Select random k, 1 ≤  k ≤p-1, , k є Z*p-1

 Compute

 r = gk mod p 

 s= k-1( M - ar ) mod (p-1)

Signature is: (r,s)

Verification

 Verify that r is in Zp-1

 Compute v1 = yr rs mod p 

 Compute v2 =gM mod p

 Accept iff v1=v2

Size of signature is double size of p

Hash function  must be used, otherwise easy for an existential forgery 
attack)



Digital Signature Algorithm (DSA)

Variant of El Gamal

Use a subgroup of Zp*


