Information Systems Security (SOEN321) Other Public Key Encryption and Digital Signature Schemes

Dr. Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)

Concordia University

Montreal, Canada

youssef@ciise.concordia.ca

Famous Number Theory Problems

FACTORING	Given <i>n</i> , find a factor of <i>n</i>
RSAP	find m such that $m^e = c \mod n$
QRP	if , decide whether a is a QR or not.
SQROOT	find x such that $x^2 = a \mod n$
DLP	find x such that $g^x = y \mod p$
GDLP	DLP on a finite cyclic group G
DHP	given $g^a \mod p$, $g^b \mod p$, find $g^{ab} \mod p$
GDHP	DHP on a finite cyclic group G
SUBSETSUM	given $\{a_1, \dots, a_n\}$ and s , find subset of a_j that sums to s

Discrete Logarithm Problem (DLP)

- Given a multiplicative group (G, *), an element g in G having order n and an element y in the group generated by g, denoted <g>
- Find the unique integer x such that g^x mod n = y
- x is the discrete logarithm

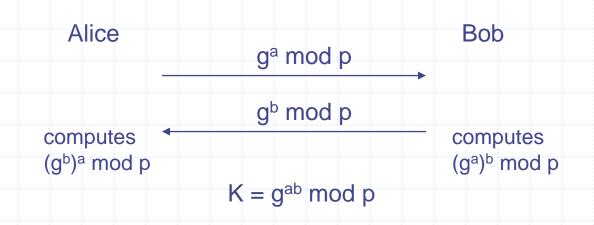
Diffie-Hellman Key Exchange

Public parameters:

```
p: A large prime
```

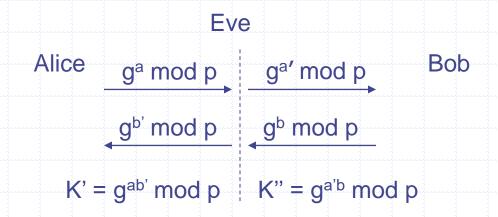
g: A generator of Z_p^* . ie., $\{g^i \mid 0 \le i \le p-2\} = \{1, 2, ..., p-1\}$.

a, $b \in \{0, 1, 2, ..., p-2\}$ are secret.



Man in the middle attack

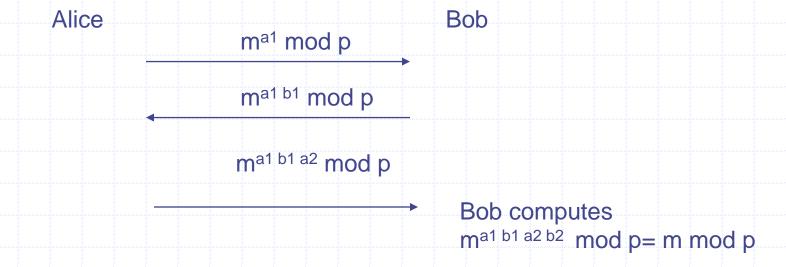
- Attacker can intercept, modify, insert, delete messages on the network.
- E.g., Man-in-the-Middle attack against DH:



- Eve can translate messages between Alice & Bob without being noticed
- Similar attacks possible on RSA & other PKC protocols.

DH Encryption

- Three pass protocol
- Alice chooses a_1 , a_2 such that a_1 $a_2=1$ mod (p-1)
- Bob chooses b_1 , b_2 such that b_1 $b_2=1$ mod (p-1)



Security of DH

- Discrete Logarithm Problem: Given p, g, $g^a \mod p$, what is a? (easy in Z, hard in Z_p .)
- DH Problem: Given p, g, g^a mod p, g^b mod p, what is g^{ab} mod p?
- Conjecture: DHP is as hard as DLP.(note: Neither is proven to be NP-complete.)
- "Strong prime": If (p-1)/2 is also a prime.
- ◆ Best known method for DLP: "Number Field Sieve" with running time e^{(1.923 + O(1))} ((ln p)^(1/3)) ((ln ln p)^(2/3))</sup>.

Square and Multiply (Review)

How to compute (ga mod p) for large p, g, a?

$$x^{n} = (x^{k})^{2}$$
 if $n = 2k$
 $(x^{k})^{2}x$ if $n = 2k + 1$

"Repeated squaring": Start with the most significant bit of the exponent.

```
E.g. Computing 3^{25} mod 20. 25 = (11001)_2

y_0 = 3^{(1)} mod 20 = 3

y_1 = 3^{(11)} mod 20 = 3^2 3 mod 20 = 7

y_2 = 3^{(110)} mod 20 = 7^2 mod 20 = 9

y_3 = 3^{(1100)} mod 20 = 9^2 mod 20 = 1

y_4 = 3^{(11001)} mod 20 = 1^2 3 mod 20 = 3
```

Rabin Public Key Encryption

- •The first example of a provably-secure public key encryption scheme.
- Recovering the plaintext is computationally equivalent to factoring.

Key Generation

select p and q primes s.t. p=3 mod 4 and q=3 mod 4

n = pq

Public key: n

Private key: (p, q)

Rabin Public Key Encryption (Cont.)

Encryption

Decryption

$$m = \sqrt{C} \bmod n$$

- Decryption is not an injection:
- Find the four square roots
- m1, m2, m3, and m4 of c mod n
- The message sent was either m1, m2, m3, or m4

Finding square root mod n

- Given c, finds out x such that $x^2 = c \mod n$
- $(c^{(p+1)/4})^2 \equiv c^{(p+1)/2} \equiv c^{(p-1)/2} \cdot c \equiv c \pmod{p}$
- - x mod p should be $c^{(p+1)/4}$ or $-c^{(p+1)/4}$
- Similarly, x mod q should be $c^{(q+1)/4}$ or $-c^{(q+1)/4}$
- Use Chinese Remainder Theorem to solve it
 - Find integers a, b such that ap + bq = 1.
 - Compute $r = c^{(p+1)/4} \mod p$ and $s = c^{(q+1)/4} \mod q$.
 - Compute $m = (aps + bqr) \mod n$.
 - Compute $t = (aps bqr) \mod n$.
- The four square roots of c modulo n are m, -m mod n, t, and -t mod n.
- For p=1 (mod 4), there is no known PTIME deterministic algorithm to compute square roots modulo p

Security of Rabin

- Provably secure against passive adversary
- relying on the difficulty of factoring large composites
- Obtaining plaintext from the ciphertext is equivalent to the modulo square root problem
- Modulo square root problem is equivalent to prime factoring
- Susceptible to chosen ciphertext attack similar to RSA
- Many RSA attacks can be also applicable to Rabin

ElGamal Encryption

- Published in 1985 by ElGamal
- Its security based on the intractability of the discrete logarithm problem
- Message expansion: the ciphertext is twice as big as the original message
- Uses randomization, each message has p-1 possible different encryptions

ElGamal Encryption (Cont.)

- Key Generation
 - prime p (system-wide parameter) and a generator g of Z_p^*
 - A's public key is $y=g^x$, A's private key is x
- Encryption
 - generate random integer k and compute $r = g^k \mod p$
 - compute $c = m y^k \mod p$
 - Ciphertext (*r, c*)
- Decryption
 - $m = c r^{-a} \bmod p$

McEliece PKE

- Based on error-correcting codes
- Select a particular code for which an efficient decoding algorithm is known, then to disguise it as a general linear code
- The problem of decoding an arbitrary linear code is NP-hard
 - description of the original code can serve as the private key
 - while a description of the transformed code serves as the public key
- Very inefficient but the key size is very large

Knapsack

- Based on Subset sum problem = NP-complete
 - select a subset sum problem that is easy to solve (super increasing sequence)
 - then disguise it as an instance of the general subset sum problem which is hopefully difficult to solve
- Key
 - The original knapsack set can serve as the private key
 - while the transformed knapsack set serves as the public key
- Most Knapsack proposals are broken

More Details

Knapsack Problem: Let $I = \{0, 1, ..., n-1\}$. Given the integer vector $A = \{a_0, a_1, ..., a_{n-1}\}$ and another integer X, is there a $J \subseteq I$ such that

$$\sum_{i \in J} a_i = X$$

Easy Knapsack Problem: If the numbers a_i have the superincreasing property, i.e.,

$$\sum_{i=0}^{j-1} a_i < a_j$$

then the knapsack problem is easy

Hard Knapsack Problem: Without the superincreasing property the knapsack problem (in general) is hard

Super increasing Sequences

Hard Example:

 $A = \{3, 4, 5, 12, 13\}$; Nonsuperincreasing

Let X = 19. We need to try all subsets of A to find out which one of these sums to 19

$$3+4=7$$
 $3+5=8$ $3+12=15$
 $3+13=16$ $4+5=9$ $4+12=16$
 $4+13=17$ $5+12=17$ $5+13=18$
 $12+13=25$

$$3+4+5=12$$
 $3+4+12=19$
 $3+4+13=20$ $4+5+12=21$
 $4+5+13=22$ $5+12+13=30$

Easy Example:

 $A = \{1, 2, 4, 8, 16\}$; Superincreasing

1 < 2; 1+2 < 4; 1+2+4 < 8; 1+2+4+8 < 16

Let X=23. Solution is found by computing the binary expansion of $X=23=(10111)_2$, thus 1+2+4+16=23

How to design a trapdoor Knapsack

Take an easy knapsack and disguise it

Example: $A = \{1, 2, 4, 8, 16\}$ Select a prime p larger than the sum 31, for example p = 37 Select t and compute $t^{-1} \mod p$, for example, t = 17 and $t^{-1} = 24$

Produce a new knapsack vector \boldsymbol{B} from \boldsymbol{A} such that

$$b_i \equiv a_i t \bmod p$$

This gives $B = \{17, 34, 31, 25, 13\}$

This knapsack problem is nonsuperincreasing

However, with the special trapdoor information t=17, $t^{-1}=24$, and p=37, we can convert this problem to the easy version

Example: Given B and X = 72, is there a subset of B summing to X?

Solve the easy knapsack with X'

$$X' \equiv Xt^{-1} \mod 37$$
$$= 26$$

$$A = \{1, 2, 4, 8, 16\}$$
 and $X' = 2 + 8 + 16 = 26$

This gives the solution for the hard knapsack:

$$B = \{17, 34, 31, 25, 13\}$$
 and $X = 34 + 25 + 13 = 72$

Example for a Knapsack Cryptosystem

User R: Publishes $B = \{17, 34, 31, 25, 13\}$

Keeps $A = \{1, 2, 4, 8, 16\}, t = 17, t^{-1} = 24,$ and p = 37 secret

User S: wants to send the message M=12 to User R

User S: Takes $M = 12 = (01100)_2$

Computes

 $C := 0 \cdot 17 + 1 \cdot 34 + 1 \cdot 31 + 0 \cdot 25 + 0 \cdot 13$ which gives C = 65

Send C = 65 to User R

User R:

Receives C = 65

Computes $C' = 65t^{-1} = 65 \cdot 24 \equiv 6 \mod 37$

Solves the easy knapsack problem:

$$6 = \underline{0} \cdot 1 + \underline{1} \cdot 2 + \underline{1} \cdot 4 + \underline{0} \cdot 8 + \underline{0} \cdot 16$$

This gives the message as $(01100)_2 = 12$

Digital Signature

Digital Signature Schemes

- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - secret signing key and a public verification key
- Services provided:
 - Authentication
 - Data integrity
 - Non-Repudiation (MAC does not provide this.)

Attack Models for Digital Signatures

- **Key-only attack**: Adversary knows only the verification function (which is supposed to be public).
- Known message attack: Adversary knows a list of messages previously signed by Alice.
- Chosen message attack: Adversary can choose what messages wants Alice to sign, and he knows both the messages and the corresponding signatures.

Adversarial Goals

- Total break: adversary is able to find the secret for signing, so he can forge then any signature on any message.
- Selective forgery: adversary is able to create valid signatures on a message chosen by someone else, with a significant probability.
- Existential forgery: adversary can create a pair (message, signature), s.t. the signature of the message is valid.
- A signature scheme cannot be perfectly secure; it can only be computationally secure.
- Given enough time and adversary can always forge Alice's signature on any message.

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Pre-image resistant
 - Weak collision resistant
 - Strong collision resistant

RSA Signature

- Key generation (as in RSA encryption):
 - Select 2 large prime numbers of about the same size, p and q
 - Compute n=p q and $\phi(n)=(p-1)(q-1)$
 - Select random integer e, $1 < e < \phi(n)$ s.t. $gcd(e, \phi(n)) = 1$
 - Compute $d = e^{-1} \mod \phi(n)$
- Public key: (e, n)
- Secret key: d, p and q must also remain secret

RSA Signature (cont.)

- Signing message M
- ♦ M must verify 0 < M < n</p>
- Use private key (d)
- compute S = M^d mod n
- Verifying signature S
- Use public key (e, n)
- \bullet Compute Se mod n = (M^d mod n)^e mod n = M
- Note: in practice, a hash of the message is signed and not the message itself.

Example of forging

- Attack based on the multiplicative property of property of RSA.
- \bullet y1 = sig_K(x₁)
- $y2 = sig_K(x_2)$, then
- \bullet ver_K(x₁ x₂ mod n, y₁ y₂ mod n) = true
- So adversary can create the valid signature y₁ y₂ mod n on the message x₁ x₂ mod n
- This is an existential forgery using a known message attack.

ElGamal Signature Scheme

- Key Generation (as in ElGamal encryption)
- Generate a large random prime p such that DLP is infeasible in Zp and a generator g of the multiplicative group Zp of the integers modulo p
- ♦ Select a random integer a, $1 \le a \le p-2$, and compute $y = g^a \mod p$
- Public key is (p, g, y)
- Private key is a.
- Recommended sizes: 1024 bits for p and 160 bits for a.

ElGamal Signature (Signing and verification)

- Signing message M
 - Select random k, $1 \le k \le p-1$, , $k \in Z^*_{p-1}$
 - Compute
 - $r = g^k \mod p$
 - s= k⁻¹(M ar) mod (p-1)
- Signature is: (r,s)
- Verification
 - Verify that r is in Z_{p-1}
 - Compute v1 = y^r r^s mod p
 - Compute v2 =g^M mod p
 - Accept iff v1=v2
- Size of signature is double size of p
- Hash function must be used, otherwise easy for an existential forgery attack)

Digital Signature Algorithm (DSA)

- Variant of El Gamal
- ◆ Use a subgroup of Z_p*