" Information Systems Security (SOEN321)

Other Public Key Encryption
and Digital Signature Schemes

Dr. Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)
Concordia University
Montreal, Canada

youssef@ciise.concordia.ca

N

Famous Number Theory Problems

FACTORING | Given n, find a factor of n
RSAP find m such that m¢ = cmod n
QRP if , decide whether gis a QR or not.
SQROOT find x such that ¥ = amod n
DLP find x such that ¢ = ymod p
GDLP DLP on a finite cyclic group G
DHP given g?7mod p, g? mod p, find g?? mod p
GDHP DHP on a finite cyclic group G
SUBSETSUM | given {a,, ..., a,}and s, find subset of a;that sums to s

Discrete Logarithm Problem (DLP)

Given a multiplicative group (G, *), an element g in G
having order n and an element y in the group generated by
g, denoted <g>

Find the unique integer x such that g mod n = y
X is the discrete logarithm

Diffie-Hellman Key Exchange

Public parameters:
p: A large prime
g: Ageneratorof Z,". ie, {g'| 0 <i<p-2} = {1, 2,...,p-
1}.

a, beA01,2,.,p-2} are secret.

Alice Bob
g2 mod p
g mod p
computes computes
(g°)* mod p (9%)° mod p

K=g2 modp

Man in the middle attack

Attacker can intercept, modify, insert, delete messages on the
network.

E.g., Man-in-the-Middle attack against DH:

Eve

~g”mod p Elgbmodp

K’ = g2 mod p K= g?® mod p

Eve can translate messages between Alice & Bob without being
noticed

Similar attacks possible on RSA & other PKC protocols.

DH Encryption

Three pass protocol
Alice chooses a,, a, such that a, a,=1 mod (p-1)
4 Bob chooses b,, b, such that b, b,=1 mod (p-1)

Alice Bob
mal mod p

mal bl mod p

mal bl a2 mod p

Bob computes
mat blazbz mod p= m mod p

Security of DH

Discrete Logarithm Problem: Given p, g, g2 mod p,
what is a? (easy in Z, hard in Z,.)

DH Problem: Given p, g, g2 mod p, g°> mod p,
what is g2°> mod p?

Conjecture: DHP is as hard as DLP.
(note: Neither is proven to be NP-complete.)
“Strong prime”; If (p-1)/2 is also a prime.

Best known method for DLP: "Number Field Sieve”
with running time e(1:323 + 0(1)) ((in p)*(1/3)) ((In In p)*(2/3)),

Square and Multiply (Review)

How to compute (g mod p) for large p, g, a?
X" = (xK)2 if n = 2k
(xK)2x ifn=2k+1
“Repeated squaring”: Start with the most significant
bit of the exponent.

E.g. Computing 32> mod 20. 25 = (11001),
Yo = 31 mod 20 =3
y; = 300 mod 20 = 323 mod 20 = 7
y, = 3010 mod 20 = 72 mod 20 = 9
y; = 311000 mod 20 = 92 mod 20 = 1
y, = 3(1001) mod 20 = 123 mod 20 = 3

Rabin Public Key Encryption

eThe first example of a provably-secure public key
encryption scheme.

e Recovering the plaintext is computationally
equivalent to factoring.

Key Generation

select p and g primes s.t. p=3 mod 4 and q=3 mod 4
n = pq

Public key: n

Private key: (p, q)

Rabin Public Key Encryption (Cont.)

4# Encryption
C=m2mod n
Decryption

m=+/C modn

Decryption is not an injection:
Find the four square roots
® ml, m2, m3, and m4 of c mod n

#® The message sent was either m1 , m2,
m3, or m4

Finding square root mod n

Given ¢, finds out x such that x2 = c¢mod n
o (clPtDA)2 = c(Pr)2 = c(PV/2:c = ¢ (mod p)
— x mod p should be ¢ #+1)/4 or -c (p+1)/4
Similarly, x mod g should be ¢ (¢+1)/4 or -¢ (g+1)/4
Use Chinese Remainder Theorem to solve it
= Find integers g, b such that ap + bg = 1.
Compute r= ¢4 mod pand s = c@1/* mod q.
Compute m = (aps + bgr) mod n.
Compute t = (aps - bgr) mod n.
— The four square roots of ¢ modulo nare m, -mmod n, ¢, and -t mod
n.

For p=1 (mod 4), there is no known PTIME deterministic algorithm to
compute square roots modulo p

¢ @ e

Security of Rabin

Provably secure against passive adversary
relying on the difficulty of factoring large composites

Obtaining plaintext from the ciphertext is equivalent to the
modulo square root problem

Modulo square root problem is equivalent to prime
factoring

Susceptible to chosen ciphertext attack similar to RSA
Many RSA attacks can be also applicable to Rabin

ElGamal Encryption

Published in 1985 by ElGamal

Its security based on the intractability of the discrete
logarithm problem

@
#® Message expansion: the ciphertext is twice as big as the
@

original message

Uses randomization, each message has p-1 possible
different encryptions

ElGamal Encryption (Cont.)

Key Generation
= prime p (system-wide parameter) and a generator g of Z,*
s A’s public key is y=¢g*, A's private key is x

Encryption
= generate random integer kA and compute r = g¢ mod p
= compute c =my* mod p
n Ciphertext (7 ©)

Decryption

= m=cr2modp

McEliece PKE

Based on error-correcting codes

Select a particular code for which an efficient decoding algorithm is
known, then to disquise it as a general linear code

The problem of decoding an arbitrary linear code is NP-hard

m description of the original code can serve as the private key
= While a description of the transformed code serves as the public key

Very inefficient but the key size is very large

Knapsack

Based on Subset sum problem = NP-complete

= Select a subset sum problem that is easy to solve (super increasing
sequence)

= then disguise it as an instance of the general subset sum problem
which is hopefully difficult to solve

#® Key

= The original knapsack set can serve as the private key
= While the transformed knapsack set serves as the public key

Most Knapsack proposals are broken

More Details

Knapsack Problem: Let I = {0, 1,...,n—1}.

Given the integer vector A= lap.ay,.... a5 1|
and another integer X, is there a J C T such
that

thi=..1':
icJ

Easy Knapsack Problem: If the numbers a;
have the superincreasing property, i.e.,

i1
Z iy < 0 i
i=1(
then the knapsack problem is easy
Hard Knapsack Problem: Without the su-

perincreasing property the knapsack problem
(in general) is hard

Super increasing Sequences

Hard Example:
A=1{2.4,512,13}, Nonsuperincreasing

Let X = 19. We need to tryv all subsets of A
to find out which one of these sums to 19

3+4=7 3+65=8 34+12=165
3413=16 4+4+5=9 4412=16
4+13=17 5+12=17 5+13=18
12+ 13=25

3+4+5=12 3+4+4+412=19

34+44+13=20 445412=21

44+5+13=22 5412413 =230

Easy Example:
A=1{1.2,4.8. 16}, Superincreasing

12,142 <4 14244 <8, 1+24+4+8 < 16
Let X = 23, Solution is found by computing

the binary expansion of X = 23 = (10111)»,
thus 14+ 2444 16 = 23

How to design a trapdoor Knapsack

Take an easy knapsack and disguise it

Example: Given B and X = 72, is there a

Z cA=11.2.4,8.16} Select a prime . - -
Example: A 11.2.4.8.15} Select a prime p subset of B summing to X 7

larger than the sum 321, for example p = 37
Select + and compute ¢ 1 mod p, for example,

f =17 and ¢ 1 — 24 Solve the easy knapsack with X

X' = Xt Ymod 37
Froduce a new knapsack vector B from A such = 2f
that A=11.24,8.16) and
h; = ait mod p X'=2484+16=26

This gives B = {17,34,31,25,13}
This gives the solution for the hard knapsack:

This knapsack problem is nonsuperincreasing

B = {17,34.31,25.13} and
However, with the special trapdoor informaticn N =34+25+4+13=72
t =17, t 1 =24, and p = 37, we can convert

this problem to the sasy version

Example for a Knapsack Cryptosystem

User R: Publishes B = {17,34,31, 25,13}

Keeps A4 = {1.2.4.8,16}, t = 17, t1 = 24,
and p = 37 secret

User S: wants to send the message M = 12
to User R

User S: Takes M = 12 = (01100)»

Computes
C'=0.-174+1-344+1-3140-254+0-13

which gives ' = 65

Send ' = 65 to User R

User R:
Receives (' = 65
Computes ¢! =65t~ 1 = 65.24 = 6 mod 37

Solves the easy knapsack problem:

6=0-14+1-2+4+1-440-840-16

This gives the message as (01100), = 12

Digital Signature

Digital Signature Schemes

Digital Signature: a data string which associates a
message with some originating entity.
Digital Signature Scheme:
= Secret signing key and a public verification key

Services provided:
= Authentication
» Data integrity
= Non-Repudiation (MAC does not provide this.)

Attack Models for Digital Signatures

Key-only attack: Adversary knows only the verification
function (which is supposed to be public).

Known message attack: Adversary knows a list of
messages previously signed by Alice.

Chosen message attack: Adversary can choose what
messages wants Alice to sign, and he knows both the
messages and the corresponding signatures.

Adversarial Goals

Total break: adversary is able to find the secret for
signing, so he can forge then any signature on any
message.

Selective forgery: adversary is able to create valid
sighatures on a message chosen by someone else, with a
significant probability.

Existential forgery: adversary can create a pair
(message, signature), s.t. the signature of the message is
valid.

A signature scheme cannot be perfectly secure; it can only
be computationally secure.

Given enough time and adversary can always forge Alice’s
signature on any message.

Digital Signatures and Hash

\ery often digital signatures are used with hash functions,
hash of a message is signed, instead of the message.

Hash function must be:
= Pre-image resistant
= Weak collision resistant
m Strong collision resistant

RSA Signature

Key generation (as in RSA encryption):
= Select 2 large prime numbers of about the same size, p and g
s Compute n=p q and @(n)=(p-1)(g-1)
= Select random integer e, 1 < e < d(n) s.t. gcd(e, d(n)) =1
= Compute d = e mod d(n)

Public key: (e, n)

Secret key: d, p and g must also remain secret

RSA Signature (cont.)

Signing message M

M must verify 0 <M < n

Use private key (d)

@ compute S = M9 mod n

Verifying signature S

Use public key (e, n)

@ Compute Se mod n = (M9 mod n)emod n = M

Note: in practice, a hash of the message is signed and not
the message itself.

Example of forging

Attack based on the multiplicative property of property of
RSA.

® vyl = sigy(xy)

#® y2 = sigy(X5), then

% ver (X, X, mod n, y, Yy, mod n) = true

S0 adversary can create the valid signature y, y, mod n on
the message x; X, mod n

This is an existential forgery using a known message
attack.

ElGamal Signature Scheme

Key Generation (as in EIGamal encryption)

Generate a large random prime p such that DLP is
infeasible in Zp and a generator g of the multiplicative
group Zp of the integers modulo p

Select a random integer g, 1 <a <p-2, and compute y= g¢
mod p

Public key is (p, g, Y)
Private key is a.
Recommended sizes: 1024 bits for p and 160 bits for a.

ElGamal Signature (Signing and verification)

Signing message M
= Select randomk, 1 < k<p-1,,keZ*
= Compute
+ r=gkmodp
+ s= ki(M-ar) mod (p-1)
Signature is: (r,s)
Verification
» Verify thatrisin Z,,
= Computevl =y"r"mod p
= Compute v2 =g mod p
s Accept iff vi=v2
Size of signature is double size of p

Hash function must be used, otherwise easy for an existential forgery
attack)

Digital Signature Algorithm (DSA)

Variant of El Gamal
Use a subgroup of Z,*

